Image analysis methodology based on geographic objects (GEOBIA) using RPAS (drone) with RGB sensor
DOI:
https://doi.org/10.53455/re.v2i.5Keywords:
Drone, Mapping, High resolution, Pinus spAbstract
Context: The present work presents a method for mapping vegetation, through a process of classification by geographic regions, called GEOBIA (Geographic Object-Based Image Analysis) considered suitable for classifying very high resolution images (very high resolution - VHR). It is possible to perform the procedure with any equipment that has a good quality RGB sensor and allows the execution of flight plan applications. Method: The method was developed based on open source software (open source) to avoid costs with licenses, at all stages, from the capture of images, elaboration of cartographic products, processing of classification by regions and conclusion through area calculations. . Result: The study was applied in four areas of interest, all in the Greater Florianópolis-SC region, containing portions of the ecosystem of Pioneer Formations - Vegetation with Marine Influence, also called restinga areas, whose main target of the classification was the mapping of the areas invaded by Pinus sp. The method proved to be useful for image classification in general, and can be used in the management of other exotic plant species, or even in other environmental applications.
Downloads
References
Bechara FC. 2003. Restauração Ecológica De Restingas Contaminadas Por Pinus No Parque Florestal Do Rio Vermelho, Florianópolis, Sc. Univ Fed St Catarina [Internet]. [accessed 2021 Feb 6] 108(3):136.https://repositorio.ufsc.br/bitstream/handle/123456789/86536/190967.pdf?sequence=1
Convenção sobre Diversidade Biológica. 2010. Panorama da Biodiversidade Global. [place unknown]. http://link.springer.com/10.1007/s00740-010-0229-z%0Ahttps://www.cbd.int/doc/gbo/gbo2/cbd-gbo2-po.pdf
Dechoum M de S, Giehl ELH, Sühs RB, Silveira TCL, Ziller SR. 2019. Citizen engagement in the management of non-native invasive pines: Does it make a difference? Biol Invasions. 21(1):175–188.
Frank E, Hall MA, Witten IH. 2016. The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques” [Internet]. Fourth Edi. Hamilton, New Zeland: Morgan Kaufmann; [accessed 2021 Jun 26]. https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf
He H, Ma Y. 2013. Imbalanced learning: foundations, algorithms, and applications.DOI:10.1002/9781118646106
Henrich V, Krauss G, Götze C, Sandow C. 2021. Index DataBase: A database for remote sensing indices [Internet]. [accessed 2021 Jun 20]. https://www.indexdatabase.de/
IBGE. 2012. Manual Técnico da Vegetação Brasileira. 2nd ed. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; [accessed 2021 Feb 6]. http://www.terrabrasilis.org.br/ecotecadigital/pdf/manual-tecnico-da-vegetacao-brasileira.pdf INPE. 2021.
GeoDMA Features [Internet]. [accessed 2012 Jun 24]. http://wiki.dpi.inpe.br/doku.php?id=geodma_2:features
Liau Y.T. 2014. Hierarchical segmentation framework for identifying natural vegetation: A case study of the Tehachapi Mountains, California. Remote Sens [Internet]. 6(8):7276–7302. https://www.mdpi.com/2072-4292/6/8/7276
De Luca G, Silva JMN, Cerasoli S, Araújo J, Campos J, Di Fazio S, Modica G. 2019. Object-based land cover classification of cork oak woodlands using UAV imagery and Orfeo Toolbox. Remote Sens. 11(10). OpenDroneMap Authors. 2020.
ODM – A command line toolkit to generate maps, point clouds, 3D models and DEMs from drone, balloon or kite images [Internet]. [accessed 2021 Jun 20]. https://github.com/OpenDroneMap/ODM
OTB Development Team. 2021. OTB CookBook Dcumentation [Internet]. [accessed 2021 Jun 20]. https://www.orfeo-oolbox.org/CookBook/
Pantaleão E, Scofield GB. 2009. Comparação entre medidas de acurácia de classificação para imagens do satélite ALOS. XIV Simpósio Bras Sensoriamento Remoto [Internet]. [accessed 2021 Mar 28]:7039–7046. http://marte.sid.inpe.br/col/dpi.inpe.br/sbsr%4080/2008/11.17.20.26/doc/7039-7046.pdf
QGIS.org. 2021. QGIS Geographic Information System [Internet]. [accessed 2021 Jun 20]. http://www.qgis.org
Sobrinho M da S, Cavalcante A de MB, Duarte A de S, de Sousa GDS. 2019. Modeling the potential distribution of Mangifera indica l. Under future climate scenarios in the caatinga biome. Rev Bras Meteorol. 34(3):351–358.
Sokolova M, Japkowicz N, Szpakowicz S. 2006. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. AAAI Work - Tech Rep [Internet]. [accessed 2021 Feb 27] WS-06-06(c):24–29. https://www.aaai.org/Papers/Workshops/2006/WS-06-06/WS06-06-006.pdf
Sothe C. 2015. Classificação do estádio sucessional da vegetação em áreas de floresta ombrófila mista empregando análise baseada em objeto e ortoimagens [Internet]. [accessed 2021 Mar 28]:249.
https://www.udesc.br/arquivos/cav/id_cpmenu/1482/CAMILE_SOTHE__dissertacao_15683968824675_1482.pdf
WekaMOOC. 2014. More Data Mining with Weka (4.1: Attribute selection using the “wrapper” method) [Internet]. [accessed 2021 Jun 20]. https://www.youtube.com/watch?v=Pf9yKjSiVnw
Ziller SR, Dechoum M de S, Duarte Silveira RA, Marques da Rosa H, Mello Oliveira BC, Zenni RD, Motta MS, Filipe da Silva L. 2020. A priority-setting scheme for the management of invasive non-native species in protected areas. NeoBiota. 62(October):591–606
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Vinicius Paiva Gonçalves
This work is licensed under a Creative Commons Attribution 4.0 International License.
The magazine follows the Creative Commons (CC BY) standard, which allows the remix, adaptation and creation of works derived from the original, even for commercial purposes. New works must mention the author(s) in the credits.