Impacto de la pandemia de COVID-19 en la atención básica de salud de las personas mayores mediante pruebas de Antígeno Próstata (PSA) en el municipio de Presidente Prudente, SP
DOI:
https://doi.org/10.53455/re.v6i.256Palabras clave:
COVID-19, anciano, Presidente Prudente, seguimientoResumen
Contexto: La pandemia de COVID-19 causó retrasos en procedimientos electivos y exámenes de rutina, afectando a poblaciones vulnerables. Este estudio evalúa el impacto del decreto de emergencia sanitaria en el cribado del cáncer de próstata y la atención a personas mayores en Presidente Prudente, SP, utilizando modelos ARIMA. Métodos: Utilizando datos de la Secretaría de Salud local, se analizaron las tasas promedio de atención mediante modelos ARIMA, incluyendo regresores para cambios en la tendencia. El análisis se realizó utilizando el Software R, con significancia del 5%. Resultados: Hubo una reducción inmediata en la atención después del decreto de 2020: 284 pruebas PSA menos y 2.470 consultas menos de atención a personas mayores. Las pruebas PSA volvieron a niveles anteriores, mientras que la atención a personas mayores se estabilizó en un nivel inferior. Ambos servicios mostraron estacionalidad. El decreto impactó ambos servicios en Presidente Prudente. La demanda se recuperó, sin embargo, la atención a personas mayores permaneció posteriormente reducida.
Descargas
Citas
Annear, M. J., Otani, J., & Sun, J. (2016). Experiences of Japanese aged care: The pursuit of optimal health and cultural engagement. Age and Ageing, 45(6), 753–756. https://doi.org/10.1093/ageing/afw144 DOI: https://doi.org/10.1093/ageing/afw144
Arsenault, C., Gage, A., Kim, M. K., Kapoor, N. R., Akweongo, P., Amponsah, F., Aryal, A., Asai, D., Awoonor-Williams, J. K., Ayele, W., Bedregal, P., Doubova, S. V., Dulal, M., Gadeka, D. D., Gordon-Strachan, G., Mariam, D. H., Hensman, D., Joseph, J. P., Kaewkamjornchai, P., … Kruk, M. E. (2022). COVID-19 and resilience of healthcare systems in ten countries. Nature Medicine, 28(6), 1314–1324. https://doi.org/10.1038/s41591-022-01750-1 DOI: https://doi.org/10.1038/s41591-022-01750-1
Atlas Brasil. (2021). http://www.atlasbrasil.org.br/
Bastani, P., Mohammadpour, M., Samadbeik, M., Bastani, M., Rossi-Fedele, G., & Balasubramanian, M. (2021). Factors influencing access and utilization of health services among older people during the COVID − 19 pandemic: A scoping review. Archives of Public Health, 79(1), 190. https://doi.org/10.1186/s13690-021-00719-9 DOI: https://doi.org/10.1186/s13690-021-00719-9
Cazumbá, M. L. B., Marzano, L. A., Batista, J. P. T., Pereira, C. C. D. A., & Machado, C. J. (2022). National Academies of Sciences, Engineering, and Medicine. Airport Roles in Reducing Transmission of Communicable Diseases. Washington, DC: The National Academies Press; 2019. Ciência & Saúde Coletiva, 27(2), 813–815. https://doi.org/10.1590/1413-81232022272.37152020 DOI: https://doi.org/10.1590/1413-81232022272.37152020
Hyndman, R. J., & Khandakar, Y. (2008). Automatic Time Series Forecasting: The forecast Package for R. Journal of Statistical Software, 27(3). https://doi.org/10.18637/jss.v027.i03 DOI: https://doi.org/10.18637/jss.v027.i03
Kandananond, K. (2014). Guidelines for Applying Statistical Quality Control Method to Monitor Autocorrelated Prcoesses. Procedia Engineering, 69, 1449–1458. https://doi.org/10.1016/j.proeng.2014.03.141 DOI: https://doi.org/10.1016/j.proeng.2014.03.141
Lima, C. A., Da Silva, B. E. B., Hora, E. C., Lima, M. S., Brito, E. D. A. C., Santos, M. D. O., Da Silva, A. M., Nunes, M. A. P., Brito, H. L. D. F., & Lima, M. M. M. (2021). Trends in prostate cancer incidence and mortality to monitor control policies in a northeastern Brazilian state. PLOS ONE, 16(3), e0249009. https://doi.org/10.1371/journal.pone.0249009 DOI: https://doi.org/10.1371/journal.pone.0249009
Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303. https://doi.org/10.1093/biomet/65.2.297 DOI: https://doi.org/10.1093/biomet/65.2.297
Matenge, S., Sturgiss, E., Desborough, J., Hall Dykgraaf, S., Dut, G., & Kidd, M. (2022). Ensuring the continuation of routine primary care during the COVID-19 pandemic: A review of the international literature. Family Practice, 39(4), 747–761. https://doi.org/10.1093/fampra/cmab115 DOI: https://doi.org/10.1093/fampra/cmab115
Miranda, G. M. D., Mendes, A. D. C. G., & Silva, A. L. A. D. (2016). Population aging in Brazil: Current and future social challenges and consequences. Revista Brasileira de Geriatria e Gerontologia, 19(3), 507–519. https://doi.org/10.1590/1809-98232016019.150140 DOI: https://doi.org/10.1590/1809-98232016019.150140
Miyah, Y., Benjelloun, M., Lairini, S., & Lahrichi, A. (2022). COVID-19 Impact on Public Health, Environment, Human Psychology, Global Socioeconomy, and Education. The Scientific World Journal, 2022, 1–8. https://doi.org/10.1155/2022/5578284 DOI: https://doi.org/10.1155/2022/5578284
Monaghesh, E., & Hajizadeh, A. (2020). The role of telehealth during COVID-19 outbreak: A systematic review based on current evidence. BMC Public Health, 20(1), 1193. https://doi.org/10.1186/s12889-020-09301-4 DOI: https://doi.org/10.1186/s12889-020-09301-4
Mori, R. R., Faria, E. F., Mauad, E. C., Rodrigues Jr., A. A., & Reis, R. B. D. (2020). Prostate cancer screening among elderly men in Brazil: Should we diagnose or not? International braz j urol, 46(1), 34–41. https://doi.org/10.1590/s1677-5538.ibju.2019.0022 DOI: https://doi.org/10.1590/s1677-5538.ibju.2019.0022
Oliveira, R. A. R. D., Guimarães, G. C., Mourão, T. C., Favaretto, R. D. L., Santana, T. B. M., Lopes, A., & Zequi, S. D. C. (2021). Prostate Cancer Screening in Brazil: A single center experience in the public health system. International braz j urol, 47(3), 558–565. https://doi.org/10.1590/s1677-5538.ibju.2020.0392 DOI: https://doi.org/10.1590/s1677-5538.ibju.2020.0392
Oliveira, R. A. R. D., Mourão, T. C., Santana, T. B. M., Favaretto, R. D. L., Zequi, S. D. C., & Guimarães, G. C. (2021). Cost-Effectiveness Analysis of Prostate Cancer Screening in Brazil. Value in Health Regional Issues, 26, 89–97. https://doi.org/10.1016/j.vhri.2021.02.002 DOI: https://doi.org/10.1016/j.vhri.2021.02.002
Penfold, R. B., & Zhang, F. (2013). Use of Interrupted Time Series Analysis in Evaluating Health Care Quality Improvements. Academic Pediatrics, 13(6), S38–S44. https://doi.org/10.1016/j.acap.2013.08.002 DOI: https://doi.org/10.1016/j.acap.2013.08.002
Perry, T. E. (2014). Seasonal Variation and Homes: Understanding the Social Experiences of Older Adults. Care Management Journals, 15(1), 3–10. https://doi.org/10.1891/1521-0987.15.1.3 DOI: https://doi.org/10.1891/1521-0987.15.1.3
Petretto, D. R., & Pili, R. (2020). Ageing and COVID-19: What Is the Role for Elderly People? Geriatrics, 5(2), 25. https://doi.org/10.3390/geriatrics5020025 DOI: https://doi.org/10.3390/geriatrics5020025
Ravindra, K., Malik, V. S., Padhi, B. K., Goel, S., & Gupta, M. (2022). Asymptomatic infection and transmission of COVID-19 among clusters: Systematic review and meta-analysis. Public Health, 203, 100–109. https://doi.org/10.1016/j.puhe.2021.12.003 DOI: https://doi.org/10.1016/j.puhe.2021.12.003
Schaffer, A. L., Dobbins, T. A., & Pearson, S.-A. (2021). Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: A guide for evaluating large-scale health interventions. BMC Medical Research Methodology, 21(1), 58. https://doi.org/10.1186/s12874-021-01235-8 DOI: https://doi.org/10.1186/s12874-021-01235-8
SEAD. (2022). Envelhecimento demográfico avança no território paulista (Informativo JULHO-2022; p. 1).
Turcato, G., Zaboli, A., & Pfeifer, N. (2020). The COVID-19 epidemic and reorganisation of triage, an observational study. Internal and Emergency Medicine, 15(8), 1517–1524. https://doi.org/10.1007/s11739-020-02465-2 DOI: https://doi.org/10.1007/s11739-020-02465-2
Veras, R. P., & Oliveira, M. (2018). Envelhecer no Brasil: A construção de um modelo de cuidado. Ciência & Saúde Coletiva, 23(6), 1929–1936. https://doi.org/10.1590/1413-81232018236.04722018 DOI: https://doi.org/10.1590/1413-81232018236.04722018
Zhang, X., Zhang, T., Young, A. A., & Li, X. (2014). Applications and Comparisons of Four Time Series Models in Epidemiological Surveillance Data. PLoS ONE, 9(2), e88075. https://doi.org/10.1371/journal.pone.0088075 DOI: https://doi.org/10.1371/journal.pone.0088075
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Marco Aurélio Aparecido Lucio, Anna Carolina Fontes Teles, Elivelton da Silva Fonseca, Rogerio Giuffrida, Flávia de Oliveira Santos

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
A revista segue o padrão Creative Commons (CC BY), que permite o remixe, adaptação e criação de obras derivadas do original, mesmo para fins comerciais. As novas obras devem conter menção ao(s) autor(es) nos créditos.