Predictive model for the proliferation of Aedes aegypti in Itajaí (Santa Catarina): An approach integrating local and global Climatic Factors
DOI:
https://doi.org/10.53455/re.v5i1.207Keywords:
Random Forest, Predictive model, Climatic variability, Aedes aegyptiAbstract
Context: Itajai, a coastal city in Santa Catarina, faces unique challenges related to the proliferation of Aedes aegypti, a vector of several diseases. This article presents a predictive model developed to forecast Aedes aegypti hotspots in the region, considering the complex interaction between local climatic variables and global phenomena such as El Niño and La Niña. Methodology: Using a Random Forest algorithm, the model is capable of capturing non-linear relationships in the data, providing insights into the influence of climatic factors on mosquito activity. The choice of this algorithm is due to its robustness and ability to consider the multiplicity of factors influencing mosquito proliferation. By grouping data by season, the model incorporates seasonal nuances, reflecting climatic variations in Itajai. Considerations: The integration of broader climatic patterns highlights the interconnection between local and global factors. This model offers a valuable tool for Itajai's health authorities, enabling proactive actions and resource optimization in the fight against Aedes aegypti. In short, this study proposes an innovative and practical approach to the prevention of mosquito-borne diseases, with potential to positively impact public health in similar regions.
Downloads
References
Alexander J, Wilke ABB, Mantero A, Vasquez C, Petrie W, Kumar N, et al. (2022) Using machine learning to understand microgeographic determinants of the Zika vector, Aedes aegypti. PLoS ONE 17(12): e0265472. https://doi.org/10.1371/journal.pone.0265472 DOI: https://doi.org/10.1371/journal.pone.0265472
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ. Computer science, 7, e623. https://doi.org/10.7717/peerj-cs.623 DOI: https://doi.org/10.7717/peerj-cs.623
Guerra, C., & Quadro, M. (2021). Estudo da variabilidade diurna da precipitação região sul do Brasil. Estrabão, 2(1), 205–209. https://doi.org/10.53455/re.v2i.56 DOI: https://doi.org/10.53455/re.v2i.56
Jupyter. (s.d.). Recuperado de https://jupyter.org/
Matiola, C. Avaliação da relação entre focos de Aedes aegypti com a distribuição espacial da temperatura nomunicípio de Itajaí/SC, por geoprocessamento. Metodologias e Aprendizado, 1, 30 – 35, 2019. https://doi.org/10.21166/metapre.v1i0.645 DOI: https://doi.org/10.21166/metapre.v1i0.645
Matiola, C. et al. O uso de dados de temperatura e precipitação deMERRA2 para compreender a dinâmica ecológica do A. aegypti no município de Chapecó/SC - 2007 a 2017. Revista Brasileira de Geografia Física, v. 12, n. 4, p. 1385-1398, nov. 2019.https://doi.org/10.26848/rbgf.v12.4.p1385-1398 DOI: https://doi.org/10.26848/rbgf.v12.4.p1385-1398
Ochida, N., Mangeas, M., Dupont‐Rouzeyrol, M., Dutheil, C., Forfait, C., Peltier, A., … & Menkès, C. E. (2022). Modeling present and future climate risk of dengue outbreak, a case study in new caledonia. Environmental Health, 21(1). https://doi.org/10.1186/s12940-022-00829-z DOI: https://doi.org/10.1186/s12940-022-00829-z
Rahman, M. S., Pientong, C., Zafar, S., Ekalaksananan, T., Paul, R. E., Haque, U., Rocklöv, J., & Overgaard, H. J. (2021). Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach. One Health, 13(7446), 100358. https://doi.org/10.1016/j.onehlt.2021.100358 DOI: https://doi.org/10.1016/j.onehlt.2021.100358
Ribeiro, E., Matiola, C., Mattedi, M., Bohn, I., Fuck, J., Guimaraes, R., Quadro, M., & Alves, T. (2023). Desafios e Aprendizados na Aplicação do Projeto Índice de Positividade de Armadilhas (IPA): Um Estudo sobre o Controle do Aedes aegypti em Santa Catarina, Brasil. Metodologias E Aprendizado, 6, 740–743. https://doi.org/10.21166/metapre.v6i.4174 DOI: https://doi.org/10.21166/metapre.v6i.4174
Santos, J. M., Capinha, C., Rocha, J., & Sousa, C. A. (2022). The current and future distribution of the yellow fever mosquito (Aedes aegypti) on Madeira Island. PLOS Neglected Tropical Diseases, 16(9), e0010715. https://doi.org/10.1371/journal.pntd.0010715 DOI: https://doi.org/10.1371/journal.pntd.0010715
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Eduardo Augusto Werneck Ribeiro, Cleusa Matiola, Mario Francisco Leal de Quadro, Matheus Ferreira de Souza, Isabel Cristina Bohn, João Augusto Brancher Fuck, Raul Borges Guimarães, Thiago Pereira Alves

This work is licensed under a Creative Commons Attribution 4.0 International License.
The magazine follows the Creative Commons (CC BY) standard, which allows the remix, adaptation and creation of works derived from the original, even for commercial purposes. New works must mention the author(s) in the credits.
Funding data
-
Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina
Grant numbers SUS2021100000030